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The facile synthesis of various P–C–P compounds is described, based on the reaction of phosphorus carb-
enoids with organoboranes, followed by reaction with phosphorus electrophiles. Using this approach,
symmetrically and differentially substituted 1,1-bisphosphorus compounds can be obtained in good
yields. A number of novel P–C–P motifs are described for the first time.

� 2008 Elsevier Ltd. All rights reserved.
Organophosphorus compounds are important in a variety of
applications, from medicines to pesticides, from ligands in catalysis
to extractants and flame-retardants.1 A special class of compounds
contains the P–C–P motif, particularly 1,1-bisphosphonates 1,
which are hydrolytically stable analogs of inorganic pyrophos-
phate. These compounds have been used clinically for over 40
years because of their ability to bind strongly to the hydroxyapatite
of the bone.2 More recent studies have shown that the mode of
action of bisphosphonates is more complex and that they can act
at various biological sites (such as inhibition of isoprenoid biosyn-
thesis),3 although their impact on calcium metabolism remains the
basis for their current medicinal use (a multi-billion dollar market
for the treatment of osteoporosis). We previously reported an
approach based on the radical reaction of sodium hypophosphite
with terminal alkynes, to prepare novel 1,1-bis-H-phosphinates 2
which are precursors to 1.4 Another type of compound is the biden-
tate ligand 1,1-bis(diphenylphosphino)methane (dppm) 3 and
related phosphines, used in catalysis.5 Based on the importance
of the 1,1-bis-phosphorus moiety, the preparation of P–C–P con-
taining compounds prompted the present study.

We recently reported a novel approach to the preparation of
organophosphorus compounds 6 based on the reaction of phos-
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phorus carbenoids 4 with organoboranes 5 (Eq. 1).6 This provided
an access to phosphonates, phosphinates, phosphine–boranes,
phosphine oxides, and phosphine sulfides. Because of the flexibility
of the method, we investigated phosphorus electrophiles in order
to prepare bis-phosphorus compounds, and the results are pre-
sented here:
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Scheme 1. Reactions of diethyl chloromethylphosphonate 12.

Table 1
Reactions of phosphonate carbenoids

Entry Starting material Organoborane Chlorophosphine Product Yielda (%)

1 P
O

EtO
EtO

Cl

12

Et3B (EtO)2PCl 9 1.5 equiv
P P

EtO
EtO OEt

Et

BH3
OEt

O

20

92

2 12 Et3B Ph2PCl 11 1.5 equiv
P P

EtO
EtO Ph

Et

BH3
Ph

O

21

62

3 12 Bu3B Ph2PCl 11 1.5 equiv
P P

EtO
EtO Ph

Bu

BH3
Ph

O

22

89

4 12 (sec-Bu)3B Ph2PCl 11 1.5 equiv

P P
EtO
EtO Ph

BH3
Ph

O

23

69

5 12 Benzyl-9-BBN (EtO)2PCl 9 4.0 equiv
P P

EtO

EtO OEt

BH3
OEt

O

Ph
24

73

6
P
O

EtO
EtO

Cl

Me
18

Bu3B Ph2PCl 11 1.5 equiv
P P

EtO
EtO Ph

BH3
Ph

O

Me Bu
25

76

7
P

O
EtO
EtO

Cl

Ph
19

Bu3B (EtO)2PCl 9 1.5 equiv
P P

EtO
EtO OEt

BH3
OEt

O

Ph Bu
26

54

8 19 Benzyl-9-BBN (EtO)2PCl 9 4.0 equiv

P P
EtO
EtO OEt

BH3
OEt

O

Ph
Ph

27

64

a Isolated yields. See the Supplementary data file for experimental details.
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Table 2
Reactions of other phosphorus carbenoids

Entry Starting material Organoborane Chlorophosphine Product Yielda (%)

1 P
S

EtO
EtO

Cl

28

Bu3B (EtO)2PCl 9 1.5 equiv
P P

EtO
EtO OEt

Bu

BH3
OEt

S

31

69

2 28 Bu3B Ph2PCl 11 1.5 equiv
P P

EtO
EtO Ph

Bu

BH3
Ph

S

32

89

3 28 (sec-Bu)3B Ph2PCl 11 1.5 equiv

P P
EtO

EtO Ph

BH3
Ph

S

33

62

4 P
EtO
EtO

Cl
BH3

29

Bu3B (EtO)2PCl 9 1.5 equiv
P P

EtO
EtO OEt

Bu

BH3
OEt

BH3

34

82

5 29 Bu3B (EtO)2PCl 9 1.5 equiv
P P

EtO
EtO OEt

Bu

H
BH3 O

35

82b

6 P
Ph
Ph

Cl
BH3

30

Bu3B Ph2PCl 11 1.5 equiv
P P

Ph
Ph Ph

Bu

BH3
Ph

BH3

36

77

a Isolated yields. See the Supplementary data file for experimental details.
b Obtained after hydrolysis of the intermediate phosphonite with aqueous HCl.
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Unlike the direct hydrolysis or iodinolysis of the a-borano-
phosphorus intermediate,6 direct treatment with diethyl chloro-
phosphite (EtO)2PCl 9, diethylchlorophosphate (EtO)2P(O)Cl 10,
or chlorodiphenylphosphine Ph2PCl 11, did not result in the de-
sired P–C bond formation. However, activation of the intermediate
7 as the borate complex 8 (Eq. 2) allowed reaction with the P(III)
electrophiles, but not with the less reactive P(V) 10. Reactions
involving the transfer of a group in organoboranes, such as the
Matteson–Pasto rearrangement, have been known for a long time.7

Initially, we focused on diethyl chloromethylphosphonate (EtO)2-

P(O)CH2Cl 12 as the carbenoid precursor to delineate the scope
of the reaction. Since (EtO)2P(O)Cl 10, did not react, the direct syn-
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Scheme 2. Decomplexation
thesis of bisphosphonates was not possible. However, this does not
constitute a major impediment since bisphosphonates can be syn-
thesized easily using literature procedures, such as alkylation of
commercially available methylenebisphosphonates.8 Indeed, other
P–C–P functionalities are significantly more interesting since
methods for their syntheses either do not exist, or are limited to
a handful of compounds.9

Reaction of 12 with n-butyl lithium at low temperature
(�90 �C) forms the corresponding carbenoid 4 which then reacts
with various organoboranes as we previously reported.6 Addition
of another equivalent of BuLi to the resulting intermediate 7
formed borate 8, which then reacted with diethyl chlorophosphite
q.
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5912 M. I. Antczak, J.-L. Montchamp / Tetrahedron Letters 49 (2008) 5909–5913
9 in good yield. The resulting intermediate could be either hydro-
lyzed, treated with an oxidant, sulfur, or BH3 (Scheme 1).10 Based
on these positive results, a full investigation was conducted.

Table 1 summarizes the results with phosphonate carbenoids
using borane complexation of the intermediate P(III) compound.
The phosphonate–phosphonite-borane complexes were obtained
in moderate to good yields. Compound 12 afforded various substi-
tution patterns (Table 1, entries 1–5). Entry 5 shows the successful
selective transfer of a 9-BBN substituted borane.6 As expected,
substituted phosphonates 18 and 19 gave the corresponding
dialkylated products in useful yields (entries 6–9).

Based on these results, other carbenoid precursors were exam-
ined (Table 2). Phosphonothioate 28,6 phosphonite-borane 29,6

and phosphine–borane 306 could all be employed successfully. As
with phosphonate 12, hydrolysis of the intermediate produced
the H-phosphinate product (Table 2, entry 5), and interestingly in
this case, simple acid hydrolysis resulted in the cleavage of only
one phosphonite-borane group.

While P–C–P(OEt)2 species can be cleaved directly with concen-
trated HCl (14 Scheme 1, and 35 Table 2, entry 5), borane complexes
can also be cleaved using different conditions (Scheme 2). While
treatment of 34 with HBF4, cleaves only one group (as with HCl)
to form 35, complete decomplexation to 37 is also possible using
an amine base followed by hydrolysis of the intermediate bis-
phosphonite. 1,1-Bis-H-phosphinate esters similar to 37 have been
previously synthesized using our radical hydrophosphinylation fol-
lowed by esterification,4 but the present approach provides added
flexibility in the type of accessible phosphorus functionalities.

Scheme 3 summarizes the present methodology. A wide variety
of known (bisphosphonate, bisphosphine–borane complexes)9 as
well as novel bisphosphorus functionalities can be synthesized in
one-pot from readily available reagents.

In conclusion, a wide variety of P–C–P compounds can be ob-
tained using our methodology. Because pyrophosphate analogs
are common motifs in biologically important compounds, and be-
cause bisphosphines are useful ligands, the present work should be
useful for the preparation of a variety of P–C–P functionalities. The
advantage of our reaction is that the direct alkylation approach is
only well precedented with methylenebisphosphonates. Because
a P(III) intermediate is involved herein, several different organo-
phosphorus functionalities can be prepared from a single inter-
mediate. Therefore, the reaction lends itself to combinatorial
approaches. Implementation of this methodology to the prepara-
tion of biologically relevant pyrophosphate analogs will be investi-
gated in future studies.
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